Class 10 Mathematics Exercise 4.1 দশম শ্ৰেণী গণিত অনুশীলনী 4.4

Class 10 Mathematics Exercise 4.1 দশম শ্ৰেণী গণিত অনুশীলনী 4.4

Exercise 4.1 অনুশীলনী ৪.১


১. তলৰ বোৰ দ্বিঘাত সমীকৰণ হয়নে পৰীক্ষা কৰা :
1. Check whether the following are quadratic equations:
(i) (x + 1)² = 2(x – 3)
(ii) x² – 2x = (–2) (3 – x)
(iii) (x – 2)(x + 1) = (x – 1)(x + 3)
(iv) (x – 3)(2x +1) = x(x + 5)
(v) (2x – 1)(x – 3) = (x + 5)(x – 1)
(vi) x² + 3x + 1 = (x – 2)²
(vii) (x + 2)³ = 2x (x² – 1)
(viii) x³ – 4x2 – x + 1 = (x – 2)³


সমাধান:
Solution:

(i) (x + 1)² = 2(x – 3)
Given,
(x + 1)² = 2(x – 3)
By using the formula for (a+b)2= a2+2ab+b2
⇒ x² + 2x + 1 = 2x – 6
⇒ x² + 7 = 0
The above equation is in the form of ax² + bx + c = 0
Therefore, the given equation is a quadratic equation.


For Assamese Medium

দিয়া আছে 
(x + 1)² = 2(x – 3)
এতিয়া  (a+b)²= a²+2ab+b² সূত্ৰ ব্যৱহাৰ কৰি পাওঁ 
⇒ x² + 2x + 1 = 2x – 6
⇒ x² + 7 = 0
ওপৰোক্ত সমীকৰণটো ax² + bx + c = 0 ৰ ৰূপত আছে। 
সেয়েহে, প্ৰদত্ত সমীকৰণটো হৈছে এক দ্বিঘাত সমীকৰণ।

(ii) x² – 2x = (–2) (3 – x)
Given, x² – 2x = (–2) (3 – x)
⇒ x² – 2x = -6 + 2x
⇒ x²– 4x + 6 = 0
The above equation is in the form of ax² + bx + c = 0
Therefore, the given equation is a quadratic equation.


For Assamese Medium:
দিয়া আছে, x² – 2x = (–2) (3 – x)
⇒ x² – 2x = -6 + 2x
⇒ x²– 4x + 6 = 0
ওপৰোক্ত সমীকৰণটো ax² + bx + c = 0 ৰ ৰূপত আছে। 
সেয়েহে, প্ৰদত্ত সমীকৰণটো হৈছে এক দ্বিঘাত সমীকৰণ।

(iii) Given, (x – 2)(x + 1) = (x – 1)(x + 3)
By multiplication,
⇒ x2– x – 2 = x2+ 2x – 3
⇒ 3x – 1 = 0
The above equation is not in the form of ax2 + bx + c = 0
Therefore, the given equation is not a quadratic equation.
(iv) Given, (x – 3)(2x +1) = x(x + 5)
By multiplication,
⇒ 2x2– 5x – 3 = x2+ 5x
⇒ x2– 10x – 3 = 0
The above equation is in the form of ax2 + bx + c = 0
Therefore, the given equation is a quadratic equation.
(v) Given, (2x – 1)(x – 3) = (x + 5)(x – 1)
By multiplication,
⇒ 2x2– 7x + 3 = x2+ 4x – 5
⇒ x2– 11x + 8 = 0
The above equation is in the form of ax2 + bx + c = 0.
Therefore, the given equation is a quadratic equation.
(vi) Given, x2 + 3x + 1 = (x – 2)2
By using the formula for (a-b)2=a2-2ab+b2
⇒ x2 + 3x + 1 = x2 + 4 – 4x
⇒ 7x – 3 = 0
The above equation is not in the form of ax2 + bx + c = 0
Therefore, the given equation is not a quadratic equation.
(vii) Given, (x + 2)3 = 2x(x2 – 1)
By using the formula for (a+b)3= a3+b3+3ab(a+b)
⇒ x3 + 8 + x2 + 12x = 2x3 – 2x
⇒ x3 + 14x – 6x2 – 8 = 0
The above equation is not in the form of ax2 + bx + c = 0
Therefore, the given equation is not a quadratic equation.
(viii) Given, x3 – 4x2 – x + 1 = (x – 2)3
By using the formula for (a-b)3= a3-b3-3ab(a-b)
⇒ x3 – 4x2 – x + 1 = x3 – 8 – 6x2 + 12x
⇒ 2x2 – 13x + 9 = 0
The above equation is in the form of ax2 + bx + c = 0
Therefore, the given equation is a quadratic equation.

Post a Comment

Previous Post Next Post

Ads

Photo Ads